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VII. On the Partitions of the R-Pyramid, being the first class of R-gonous X-edra.
By the Rev. Toomas P. KirkMAN, M.A., F.R.8., Rector of Croft with Southworth.
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I. As the partitions of an r-gon are made by drawing déagonals, so the partitions of an
- r-ace are made by drawing diapeds, each a line in two faces non-contiguous about the
r-ace. A partitioned r-ace standing on a partitioned r-gon is a partitioned pyramid of
r-gonal base and vertex. Iam about to determine the number of such partitions of this
r-pyramid, that can be made with K diapeds and % diagonals, so that no two partitions
shall be syntypous; . e. one the repetition or the reflected image of the other.

I have proved in a memoir “On Autopolar Polyedra” in the Transactions of the

Royal Society for 1857, that the problem of the polyedra reduces itself to the determi-
nation of the z-edra generable from the r-pyramid. Such an z-edron is r-gonous. -

Def. An r-gonous z-edral y-acron is one that by vanescence of convanescible and
evanescible edges can be reduced to the 7-pyramid, and cannot be so reduced to an
ampler pyramid.

The definition of convanescible and evanescible edges is found at Article II. of the
~ above-mentioned memoir, as follows :—
~ An edge AB is said to be convanescible, when neither A nor B is a triangle, and AB
joins two summits which have not, besides A and B, two faces, one in each summit,
collateral, nor covertical.

An edge ab is said to be evanescible, when neither @ nor & is a triace, and the two
faces about @b are not, one in each, in two summits, bemdes @ and b, collateral, nor in
one face.

IL. Theorem. No r-gonous polyedron has an (r4-1)-gon among its faces, nor an
(r41)-ace among its summits.

For if it has an (r41)-gonal face, and no vanescible lines out of that face, it is an
(r4-1)-pyramid, contrary to hypothesis; and if it has such a face and such lines out of
that face, these can be made to vanish, until the figure is an (r+1)-pyramid, <. e. it is
(r41)-gonous; contrary to hypothesis.

In the same way the theorem is proved if the ﬁgure has an (r+1)-ace.

Cor. No r-gonous polyedron can be reduced by vanescences (4. ¢. disappearances of
convanescible and evanescible edges), to one having an (r+1)-gon or an (r41)-ace ; 3. e.
no r-gonous polyedron contains an (r+-1)-gony. ' '

II1. The first family of -gonous polyedra are those arising from partitioning the base
and vertex of the r-pyramid, or, which is the same thing, from laying a partitioned
r-ace upon a partitioned r-gon.
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If we draw k diagonals in the base, none crossing another, and suppose the base to be
a system of £4-1 faces intersecting in those lines, we have a (r+1)-acral (r+%+1)-edron.
If we next draw K diapeds, i. e. edges each in two non-contiguous faces about the
r-ace, none of them enclosing a space, we have K new summits, and have before us a
(r+X+1)-acral (r+%-1)-edron, of the class now to be considered.

Another family arises from partitioning the faces which intersect in the K diapeds,
and the summits joined by the £ diagonals; and a third family from the partitioning of
the faces and summits upon the diapeds and diagonals which constitute the second.

The first class alone are here to be enumerated, and the question before us is to
determine how many different 7-gonous (r+X+1)-acral (r4%-1)-edra can be made, by
laying a (14X)-partitioned r-ace upon a (1-4%)-partitioned 7-gon, the  rays passing
through the » angles.

IV. Theorem. Every (r+K+1)-acral (r+£41)- edron Q, made by laying a (14+K)-
partitioned r-ace A on a (14-%)-partitioned r-gon G, the r rays upon the r angles, is
7-gONous.

For let it be supposed that Q is (r-4-1)-gonous: it is then a (r+14X)-acral
(r+1+4%)-edron having K—1 diapeds and £—1 diagonals, the vanescence of which will
reduce it to the (r41)-pyramid. These K—1 diapeds-cannot be any K—1 of the K
diapeds of A ; for of these all the K must vanish to form an r-ace, much less can K —1
vanish to form a (r4-1)-ace. Nor can these diapeds be all of them edges and diagonals
of G, for if G contains an (r-41)-gonous system of convanescibles, one at least of them
must be a diagonal d, which may be made to vanish last of the K—1, and must give
rise to an (r4-1)-ace. But d vanishing can bring together only four edges of the r-gon;
it must then bring together »—3 terminations of different diagonals; but if G has r—3
diagonals, it is reduced to triangles, in which no line is convanescible ; which is contrary
to hypothesis.

Therefore this (7+1)-gonous system of convanescibles must contain at least one ray ¢
of the r-ace A ; and as convanescibles may vanish in any order, one by one, as may dia-
gonals or evanescibles, this 4 can be made to vanish last of the K—1. It must there-
fore at last carry at one end an (r4-1—e¢)-ace, and at the other a (24-¢)-ace. Let
(3, the base summit on 4, be the (r4-1—¢)-ace: this summit having only two edges of
the r-gon G and but one ray 4, has r—e—2 diagonals of G terminating in it; wherefore

1424 r—e—2=r+1—¢
summits of G are occupied by r+1—e edges of Q that meet at 3, one of those summits.

The other extremity « of ¢ carries a (2--¢)-ace, the edges of which are first, 4;
secondly, two diapeds of A, for if 4 at « meet only rays of A on one or both hands, it
would be in one or two triangles, and would be not convanescible; thirdly, e—1 rays
of A, because

24e—1—2=¢—1,
which e—1 rays terminate at ¢— 1 summits of the r-gon G, all different from the r+1—¢
summits above mentioned ; for if an edge of the (¢+2)-ace meet one of the (741 —e¢)-ace,
¢ would be not convanescible, by definition.
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We have still an account to give of the rays of A meeting in the other extremities of
the two diapeds joining A in the (r41—e)-ace. There mustbe at least a set of two rays
at each of those extremities. One ray in each set will be in each non-triangular face
about ¢, and therefore in a face about the (r+41—e)-ace; another ray in each set, that
most remote from 4, will be in a face about the (24-¢)-ace, and cannot therefore meet
any edge of the (r+1—¢)-ace, because 4 is convanescible ; each ray must therefore pass
to a summit of the r-gon not occupied by the »—e—2 diagonals above mentioned, and
being rays of A, neither can meet any other ray on the r-gon. But 741—¢ summits
of G have been shown to be occupied by the edges of the (r41—¢)-ace, and e—1 more
by the ¢—1 rays meeting in the (2+4¢)-ace; therefore there are no summits of the 7-gon
remaining to which the two last considered rays can pass from separate extremities of
the two diapeds meeting 4. Q. E. A.

Therefore Q is not (r-+1)-gonous.

In the same way it can be proved a fortior: that Q is not (r<4-1-#')-gonous.

V. This theorem being established, at a cost of words of which I feel ashamed, our
problem is reduced to the enumeration of the different figures obtainable by laying any
(14 K)-partitioned r-ace A on any (1-%)-partitioned r-gon G. But we are to exclude
from our reckoning any figure P’ which is the reflected image of another, P; for P,
being only P turned inside out through some face supposed open, has the same arrange-
ments and ranks of summits and faces with P, 4. e. is syntypous with P.

What follows will be intelligible to the reader who has before him my memoir “On
the Z-partitions of the r-gon and r-ace,” in the Transactions of the Royal Society for
1857. 'These partitions can be found by formule there given.

VI. Let a (14Z%)-partition A of the r-ace, havmg J axial planes of reversion, be laid
on a (14k)-partition G of the r-gon, having ¢ axes of reversion (vide the above memoir,
Art. LXXTIL and Theorems A, B, C, &c.). I call the intersection of an axial plane
with the 7-gon @ frace, and by an axis I mean always an axis of reversion of the
r-gon G. '

If we can lay a trace upon an axis, the 7 rays of A passing through the 7 summits of
G, we shall see, among the angles >0 at which the remaining traces are inclined to the
axes, a certain least angle ©. If # be the number of half-edges of the r-gon between
two adjacent traces, and y that between two adjacent axes, and z that in the angle ©,
O is the least positive value of z in

ar=bytz,

@ and b being numbhers of these intervals # and y measured in the same direction from
the united trace and axis. When « is prime to g, it is well known that z=1; and
when 2 and y have m for their greatest common measure, we have
tz’
m

by
=241

ar=>by+m.
X2
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Here m is the least possible value of z; for if we say
ar=>by+m—n,
we shall have m—n divisible by m. Q.E.A.
The number # is 27:2j, and y is 2724, that of the half-edges of the r-gon divided by
the number 25 or 2¢ of intervals between traces or axes. If we put

r
for the greatest common measure of 7y and 74, this m is the number of half-edges in 6,
the least interval >0 between a trace and an axis.

Now let © be diminished by an entire edge, every ray taking the place of that pre-
ceding it in the direction of revolution of the r-ace. 'We shall thus step by step dimi-
nish © either to zero or to half an edge, as m is even or odd. The combined configura-
tion will be different at every step, because the least angle between a trace and axis is
always diminished, and the configuration C carried by either end of the revolving trace
is brought at each step to stand over a different configuration in the r-gon; for m3> the
least interval of the two #=r;j and y=r; that is, no trace is made to cross an axis by
this process of diminishing ©.

VII. When © has its greatest value, it is either 7;j or 74, containing the whole interval,
reckoned in half-edges, between two adjacent traces, or adjacent axes. If it is even, it
can be reduced to zero, and the last position as well as the first will show a trace coin-
cident with an axis; but whether these positions show a trace ¢ over two adjacent axes,
or an axis ¢ under two adjacent traces, the combined configurations will be different,
because the alternate axial configurations read at the terminations of either traces or
axes are always different. IHence, when © is reduced to zero, the figure is not a
repetition of a previous one.

But if we diminish © below zero, we shall repeat in reversed order the configurations
seen when © was >0, ©=¢ on one side of the united trace and axis giving the reflected
image of the figure seen in ©=—¢; as everything is reversible about the united trace
and axis, when ©=0. Ience a trace is never to cross an axis in our process.

VIII. If then we can lay a trace upon an axis for a first position for © undiminished,
we shall obtain as many additional figures by diminishing © by an edge at a step as there
are entire edges in ©. That is, if © is even, we get

Ldm=1+} f=3{2+7)
different figures; and if © is odd,

1+ (m— 1)=%{1+j—’!’2.}
different figures. Or if we put

3N =the greatest integer in 1N,
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we obtain both for © even and © odd,
!—%{2 +j—',%} different figures,

whenever a trace can be laid upon an axis, © even being finally reduced to zero, and ©
odd to half an edge. -

But if A has only diachorial traces and G only diagonal axes, or if A has only acho-
rial traces and G only agonal axes, we can lay no trace upon an axis, if the » rays pass
through the » angles of G. Our first position will therefore show the © reckoned as
above diminished by half an edge, and our last position will show © diminished to half
an edge. Wherefore © must be even, as is also evident from the consideration that
the interval between either two traces or two axes in these cases is an even number
of half-edges, so that their greatest common measure is even. Hence the number of
figures obtainable by the reduction of © is one less than that obtained above for ©
even, 4. 6.

is the number of different figures attainable, when no trace can be laid upon an axis,
by laying A upon G in every possible way.
Now we can always lay a trace upon an axis, unless either the traces are all achorial
and the axes all agonal, or the traces are all diachorial and the axes are all diagonal.
IX. Hence we have the Theorem: ‘
The number of (r4+K+1)-acral (r+%-1)-edra that can be made by laying .
A one of R™(r,K) on G one of R%(r, k), or
A one of R*(r,K) on G one of R*(r, k),

. ‘ r .
18 %]Ti’

and the number of them obtainable in every other case by laying a j-ly reversible (1+4£%)-
partition A of the r-ace on an ¢-ly reversible (1+4k)-partition G of the r-gon is

%{2 +j%} ;

where j% is the greatest common measure of 7;j and 7:¢, and !N is the greatest integer in
iN. ‘
X. Now let A, a (14+X)-partition of the r-ace reversible about j axial planes, be laid
on G, an ¢ly irreversible (14-%)-partition of the r-gon.

If we lay A in any way on G, so that thé r rays pass through the 7 angles of G, we
see at p, the termination of a certain trace, a configuration G’ in G under the axial con-
figuration A’ in A. This A’ is seen in Aj times, at half the 2j terminations of traces;
and G’ is seen in G ¢ times, at the first point of each of the ¢ equal irreversible sequences
that are read round the r-gon, beginning at p. Let ©' be the number of entire edges
between that A’ and G’ that are nearest to each other without coincidence, observed in
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our first position of A on G. Then, if we reduce ©' by an edge at once, till it is only &
single edge, we shall obtain ©' different combined configurations; because no two of
them show the same distance measured in the same direction between the A' and G/
nearest each other. If we reduce ©' to zero, we see again G’ under A', as in our first
position, and begin here a series of steps that reproduce the previous figures. Hence
the exact number of different results is ©', the least value of z in

r r
a;:b;iz,

the numbers ¢ and & of intervals 7y and 73 of whole edges from A’ to A' and from G’
to G' being measured from p. This z is the greatest common measure of r;j and 73,
1 e.

o' =f—,z whole edges.

Wherefore this is the number of different figures obtained by laying one of R(r, K) on
one of I‘(r, k), and the same exactly is that obtained by laying one of ¥(r, K) on one of
Ri(r, k). No new figures can be obtained by reversing the irreversible G, or by turning
inside out the irreversible A, because A in the first, and G in the second, of these cases
being reversible, we shall merely obtain by that reversal a reflected image of the figure
before the reversal.

XI. It remains that we lay A one of F(r, K) on G one of I‘(r, k), an irreversible on
an irreversible. »

A being laid in any way on G, we see at a certain point p the configuration A” over
the configuration G”. A" is found in A j times, and G” in G ¢ times. The least interval
in whole edges >0 between an A" and a G" in our first position is the least value of z in

a£=b£iz,
J 3

7y being the number of rays in one irreversible sequence in A, and 727 that of summits
in one irreversible sequence in G. And we have

for the number of different figures, each Showing a different distance measured in one
direction, between the nearest A" and G. If we now either reverse G, or turn A inside
out, we can double this number of results, for A in the first case and G in the second

being irreversible, we obtain figures which are not reflected images of preceding ones.
‘Wherefore the entire number of figures obtainable is ‘

7
2'.7'—!?

by laying any one A of I(r, K) upon any one G of I{(r, k).



BEING THE FIRST CLASS OF R-GONOUS X-EDRA. 151

Collecting our results, we have shown that there are

!—;—{2 +j%} ways of laying
A one of R™(r,K) on G ‘one of R“(r, k) or of R“*(r, k),
or A one of R*(r, K) on G one of R¥“(r, k) or of R¢%(r, k),
or A one of R*”(r, K) on G one of R“(r, k), R(r, k) or R**(r, k),
or A one of R™(r, K) on G one of R™(r, k).

And there are

1

3 - different ways of laying

A one of R(r, K) on G one of R%(r, k),

or A one of R*(r, K) on G one of R(r, k).
Also there are ”
E different ways of laying

A any one of R/(r, K) on G any one of I'(r, &),
or A any one of ¥(r, K) on G any one of Ri(r, k).

And there are ”
2. i different ways of laying

A any one of ¥(r, K) on G any one of I(r, k).

XII. It is certain that, in every one P of these figures, the configuration with respect
to the r-gon 12 3..r, is different from that seen with respect to the r-gon 12 3..r upon
any other figure P'. But it remains to be considered whether there may not be on P
another closed r-gon, whose summits are not 12 3..r, about which is seen that configura-
tion which we read on P' about the 7-gon 123..r. If this be so, the (r4-K4-1)-acral
(r+k-+1)-edron P may be merely the (r+K4-1)-acral (r+4£-1)-edron P'. That is, P
may be reducible by vanescence to two (r4-1)-edral pyramids not having the same
signatures, and may be considered as A laid upon G, or as A, a differently partitioned
r-ace from A, laid on G/, a differently partitioned 7-gon from G.

If P has this double character, I call it a digenerate r-gonous (1+K)-acral (1+%)-
edron; and if it can be made by laying A on G, and by laying A' on G, and by laying
A" on G", &c., I call it a multigenerate.

XIII. We are thus compelled to inquire, how many'multigmemtes of the first class
can be made by laying a (14 K)-partitioned r-ace on a (1+4%)-partitioned r-gon ; for as
we are enumerating only those of the first class, we have no repetitions to fear out of it.

Tt is true that some of these (r4K+1)-acral (r+%4-1)-edra of the first r-gonous class,
are also (r+K-1)-acral (r+%-1)-edra of the second ; as A’ having K—e diapeds, and .
laid on G’ having % diagonals, and also ¢ diapeds of the second class, may give the same
polyedron with A having K diapeds, laid on G having % diagonals. This will perplex
the discussion of the second class, but does not trouble us here.



152 REV. T. P. KIRKMAN ON THE PARTITIONS OF THE R-PYRAMID,

Let Q be such a multigenerate, made by laying A on G, and by A’ on G, &c. As A
is not A',-the 7 rays of A’ will not comprise all those of A ; nor can they be all diapeds of
A, for A cannot have more than r—3 diapeds; nor can they all be found among the sides
and diagonals of G, for it is impossible to make above r—1 edges and diagonals by any
arrangement or.convanescences to meet at one summit of G ; while A’is reducible by con-
vanescence to an r-ace. Wherefore ¢( >0, <7) of the rays of A must be also rays of A'.

Let these ¢ common rays be aa, b6, cc,, dd,, ..., the points eb¢d ... being summits of
G/, and @,0,¢,d, ... summits of G. If the K diapeds of A convanesce, A becomes a simple
r-ace R standing on G the r-gon @,,¢c,d, ..., wherefore abd, bc, cd, ... are diapeds of A;
and in like manner ap, bc, ¢d, ... are diapeds of A'. When A is reduced to the simple
r-ace R, there are no summits of the figure on the side of the r-gon @, 4, ¢,d, ... remote
from R, since A is laid on the partitioned r-gon ¢, b, ¢, d,...; and if A' be reduced to the
simple r-ace R/, there are no summits in the figure on the side of the r-gonabcd...
remote from R. Hence Q, the figure A upon G, is of this form, for the case r=10.

Here G is the 10-gon a,b,¢,def ghij,

G'is the 10-gon abedefghiy;

The ¢ common rays are aa, b, cc, dd,; (e==4)

The diapeds of A are ab, be, cd;

The diapeds of A’ are ap, b¢, ¢ d,;

The diagonals of G are a, a,h bg, c.f all rays
of A'; )

The diagonals of G' are ai, ch, cg, df; all rays
of A.

* The number of these diagonals, along with the ¢ common rays and the lines ¢j and de,

must make up in A' the r rays, 4. e.

k=r—e—2,
of which one must pass through each of the 7—g—2 summits of G’ fghd, which are
also summits of G through which pass the rays of A, a3, ¢k, ¢g, df. The number of
-diapeds in either A or A'is
K=p—1=r—Fk-3.

XIV. The condltlon to be fulfilled in drawing the dlagonals of G is, that all the e—1
lines ab, be, cd shall be diapeds, <. e. none of them in a triangle, and the diagonals of G/
must be so drawn that all the lines ap, b¢c, cd, shall be also convanescible. If these
conditions are fulfilled, the figure is blgenerate otherwise it is not. This condition is
fulfilled, if the £ rays of A from ¢% ¢ f be drawn in any manner not crossing one another
to one or more of the ¢ summits ¢4 ¢ d, and if the % rays of A’ from ¢/ ¢ f are drawn in
any manner not crossing one another to any of the summits @,4,¢,d,. For example, the
rays of A, or rather the diagonals of G, may be drawn all to a, viz. ai, ah, ag, af; the
lines @b, be, cd will be convanescible, being three sides of an open 6-gon adcdef; and
thus it is easily seen that these £ diagonals of G' through ik g and f may be dlstnbuted
in any manner upon the summits a b ¢ d. S
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Such a figure Q can only be bigenerate; for suppose that it was trigenerate, made by

laying A on G, or A’ on G/, or A" on G”". Then it b g

is proved that A and A" have p=r—%—2 common E ] f

rays, and that the only diapeds of A are ab, bc, ¢d ...; 1 . | B\ e
hence the rays common to A and A" must be ai, bh, g He “-\ c

¢g, df ..., and the figure must be of the form ~_ 4 ¥

But this is not properly multigenerate, the three
10-gons jihgfedcba, jihgfedcda,, and jabededcpa, being all the same partition G sur-
mounted by the same partitioned 10-ace A. A 4-generate Q is here entirely out of
question; for the figure must reduce, by the convanescence of the »—%—2 diapeds of A,
to a simple r-ace standing on G having % diagonals. "Wherefore the Q to be considered
here is bigenerate only.

XV. We shall know the number of bigenerates, if we determine in how many different
ways these k diagonals drawn from % consecutive summits of the 7-gon can terminate at
the r—%k—2 summits ¢ 6 ¢d. But if G and G’ had the same arrangement of their %
diagonals, or if one were merely the reflected image of the other, we should have a
figure generated by A upon G only, 4. e. a figure that we have constructed and counted
only once among those made by laying (K+1)-partitioned r-aces upon (k+41)- partltloned
?-gons For example, neither of the two figures following"

has been twice enumerated ; for whether we take ab, ¢, and cd, or ap, bc, and ¢d, for
the diapeds in either, we find indeed A on G and A’ on G/, but A differs in no respect
from A/, nor G from G, nor is there any difference in the way of applying the A to
the G. FEither of them is made by laying in one way only the 4-partitioned 10-ace A
on the 5-partitioned 10-gon G, here given separately.

The (1+k)-partitions now to be enumerated may be either reversible or irreversible.
If £ is odd and g=7—%—2 is odd also, that is, if 7 is even and % is odd, one of the %
diagonals may be a diameter about which the partition is reversible, If % is even, and

g, 1. e. 7, is either even or odd, the partition may be reversible about either an agonal
MDCCCLVIIL. Y
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or a monogonal axis; 3% diagonals being similarly drawn on either side of it. But if %
is odd and r—%k—2 is even, 4. e. if r be odd, no axis but a monogonal can be drawn
through the central one of the % summits ¢, , ¢, &c., which axis cannot be a diagonal.
Hence if £ is even and 7 is odd, the partition cannot be reversible. »

XVI. First, let £ be odd and 7 even. 'We can draw a diameter o through the central
point of 4, %, ¢, &c. for one diagonal, and can draw 3(£—1) on one side of d to termi-
nate in one or more of 3(r—%—1) summits, viz. the central point of ab¢...and those
on one side of it, in

(hr—k—) "
HES I
different ways, and the figure can be completed symmetrically about 8 in so many ways
into a reversible (1+4£%)-partition.

If k£ is even and r is even, we can draw 3% of the diagonals to one or more of the

corresponding half of the r—%&—2 summits ¢, A, ¢, &c. in
e f A1
?(T%(;z +__._.z;& ! different ways,
and compléte the figure by drawing the remaining 1% into a (1-4%)-partition reversible
about an agonal axis having on each side of it 1% diagonals.

If & is even and 7 is odd, we can draw 3% of the diagonals to the L(r—k—1) points
consisting of the central point of the »—%£—2, and the rest on one side of it, and the
figure can be completed symmetrically about the monogonal axis through that central
point into a reversible (14-%)-partition, in

(2r—k— 1))
z(k+2) ;
Wherefore the entire number of reversible ways of drawing £ diagonals from % conse-
cutive summits ¢, &, ¢... to one or more of the (r—%k—2) summits @, b, ¢..., is
. Lir—f—1))Hk-01 Lr—k—2))¥" Lr—k—1))¥"
N, =242, : i), 2,4 mm))) }+22(_<W+_7)>L
The entire number of ways in which % diagonals can be drawn from the % points
i, hy g, ... to one or more of the r—%&—2 points ¢ b¢..., is
(r—k=—2)F"
k+1
among these every reversible partition comes once only, but every irreversible Q occurs
twice; for Q and its reflected image both occur. Hence the number of irreversible

(14 %)-partitions is
_— (7._k_2)k|l— ,
Nr,_k—"',l‘f{ k+1 Nrk}'

XVII. Of these N, , reversible modes of partition any one can be combined in G with
any other in G/, giving $N; ,(N; ,—1) pairs, and as many bigenerates, which have been
each twice constructed and counted. Of these N, , modes any one may be combined

different ways.
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in G with any of the irreversibles in G/, giving N; , N7 ,, and as many bigenerates. Of
the N , irreversible partitions any one in G may be combined with another in G, and
again with that reversed, so that each of the {N; (N, ,—1) pairs gives two blgenerates
For example, the two bigenerates

“have each the same irreversible partition G on the lower side in the same position, and
each the same irreversible partition G' above, but in positions one the reverse of the
other.

Hence the entire number of bigenerates is

Nr, k=%N;', k(N;, i 1)+Nlr,k N'rl, k+N:, k(N:, P ]-),

where N’ and N" have the values just found.

And this number N, , is to be subtracted from the results of our enumeration by pre-
ceding formule, being the exact number of (r+4XK-1)-acral (r+%+1)-edra that were
twice constructed, each one Q being made both by laying A upon G, and A’ upon G'.

XVIII. Thus we have completely determined all the partitions of the (r-1)-edral
pyramid. All that is necessary is to give to £ every value from £=0 to £=r—3 in the
formulee of Art. XI. and the same range of values to K ; then to give to % in the two pre-
ceding articles every value from £=1 to k=r—4; for here since neither # nor K <1,
k=r—K—3%r—4.

And we have at once the number of r-gonous (r4K+1)-acral (r+%k+41)-edra of
the first class, by giving to # and K their values in (XI.) and (XVIL). That is, if
I1, ¢, » be this number,

0,y =33 [{R“”D"(r, K)(Re(r, k)-+Ro(r, B)+R“(r, )

R, K)(R#(r, )+ R¥(r, 1)) +RP(r, K)(Reo*(r, £)+R%(r, 1)

R, K). Ri(r, /c)}x!-;-(2+j! )+ (R K) R, 1)+ R%(r, K). Ri(r, £)) X1
+(E(r; K).Ri(r, B)+R(r, K) T, 1)) 55428 K). 15 £). 7]

(N )3 NN e DN, N NG (1))

Wherej is the greatest common measure of and = 5, and 13A is the greatest integer in

3A, and where R/(r, k) denotes the entire number of j-ly reversibles about all axes, the
rest of the notation here used being that of my paper referred to in Axt. V.; and where
‘ Y 2



156 REV. T. P. KIRKMAN ON THE PARTITIONS OF THE R-PYRAMID,

N, 2o, , Gk o Go—ko2)R) Ly o (e—ko D
mk 7‘{21‘—* [%(k+l) k a (IC+2) } 2r-t 2]: f%-(kT2)

and

k+1

And the entire number 9, of partitions of the (r-41)-edral pyramid, made by parti-

tioning both the vertex and the base by diapeds and diagonals, is

5= EKEI:H;’,K, k>
the double integral being taken for every value both of K and % from zero to r=3.
The quantity N, ,, subtracted in II, ¢ ,, vanishes for £=0 and for k=r—3.

XIX. Thus far the theory of the polyedra has been opened and discussed without
descending to any classification according to the ranks of the faces and summits. We
have had nothing but an r-ace and an r-gon to partition. But I do not see how the
second and higher classes of r-gonous a-edra can be enumerated without such a classi-
fication. This will, I fear, introduce a boundless complexity, and go far to deprive the
investigation of all claim to scientific generality. Yet others may find out a more prac-
ticable method of attacking this interesting problem, and I may live to see the remain-
ing cases of it discussed within a reasonable compass. I wish the analyst joy of his
task who shall undertake to complete what I have had the good fortune to begin.

XX. I have no doubt that the number of r-gonous z-edra is always limited ; but the
maximum number of their edges is no simple functlon of ». It is worth while to write
out all the 4-gonous polyedra.

These are, first and second,—

314\43245 30443385 33403,3s 344.3545 3;4:363: 36443.3)
35313145 3640334y 3:33344s,
a 6-acral 5-edron, and its polar syntyp,—
314,324 3:4,3335 33423435 34423545 354,343,
36443131 35313145 3642354, 333345

The heavy type expresses the faces, and the lighter the summits.

Both are thus represented in one paradigm, by the method explained in my paper
“On the Representation of Polyedra,” in the Philosophical Transactions for 1856, using
the circles 123456 and 12345, and writing @ at (1, 4) and (2, 5), &c.:

AL
=T N

. X
5 4 B f - . . g e 1 & =9
. 5
2 .. . ¢ d e h g
A . i .
3 3§ .t b o .o £ 6\ S w i@
a b h . . ‘ [ o
4 . s 3 .
1 % Dy g 47 . ? d R X 2l b 3
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Both these are of the first class of 4-gonous polyedra, the only one besides of this class

being the autopolar 6-acral 6-edron. This is,—
4:343:35 32454335 453123.36 3441436 3543k
4.3,3:35 82454335 453:3.3¢ 34414136 35453641,

which is also thus represented, using the circles 123456, 123456, and puttlng A for the
gamic of a, &c.,—

D . . d A e 6
¢c A B . | B/‘
b e C '
a C D D4ﬂ>“-:ﬁ/<
o
E « A ~\§

d

ks

)
(L9
1

g

which reduces by the gamic pair Ee to the pyramid on 1234.

The fourth and fifth are a sympolar pair, a 6-acral 7-edron, and a 7-acral 6-edron, of
the second class of 4-gonous z-edra, made by partitioning a 4-gon or a 4-ace in the pre-
ceding autopolar so as to introduce no pentace or pentagon. Thus,

»41323241 3‘2433341 334‘-'43441 34443536 35443645
87324:145 37433232 33433644 41413436 4:1363545’ ‘

41323241 32433341 33443441 34443536 35443645 36433745
37324145 37433232 33433644 41413436 413635457

both which are seen in the paradigm made by the circles 1234567 and 123456 as
follows :—

36433745

4 e i 3 ) 5 % /G
j oa b K . \™S
a h . g \ @;\x&/
j 6 et A AL \/ a N !
/ ! c d e 1 .
cs g ke f ‘_h/ \
///g 2 k Jj N VA \
r ’}. a 2 ’:\1“

The sixth and seventh are the regular 6-edron and its polar syntyp the regular 8-edron,
both of the second class, the first represented by writing under 3434 the 12 quadruplets

1426 2435 3443 4153 5263 6275 7286 8116 1144 8261 33656 7625,

and the second by writing under 3434 the same 12 quadruplets. Both are exhibited
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thus by using the circles 12345678, the closed octagon through the summits of the
6-edron, and 128456, the hexagon on the faces :—

3
a ol 2
7 5 . 6
8 / ;
o A f / h d J g \\
a 2 & e f 1 g i # /1 i
\NOIX 65 i ¢ d e . . g\ , 7
i 1\ ) a b ¢ h . LR 3\ °
// 2 7 E b . i f : & k
S b g a E o1l )
/ g . 1 @ P —
1 J 2 ' , 6

This arises from partitioning the only tesserace in the preceding 7-acron, and is reduced
to that by the convanescence of any one of its twelve edges. It is also of the second
class. '

The eighth is an autopolar heptaedron,—

‘41354236 42443333 ) 44;423537 3644‘3741 37354141 458334436
35423641 44338342 4,‘5353744 4:4;374,:136 35414137 33443642

6 = s e . . . E A 4
. B ¢ A F
A% 4 f & B .o
5.1 M . 2 3B b F a C
5 /0 a C . . ¢
£ ‘\\\\
%-, 6 S D e . f
S ,7_\3 \\‘4! E . D 4

It is not possible to reduce any of these eight polyedra to the 5-based pyramid ; nor can
any diagonal or diaped be drawn in any of them which shall not either produce another
of the eight, or introduce a penfagony, i. e. a 5-gonous system of vanescibles. There are
no 4-gonous 2-edra of a class beyond the second.

XXI. There is no difficulty in finding tentatively the number of 5-gonous polyedra
by partitioning the faces and summits of the first class of them, taking care to introduce
no hexagony. 'The partitions of the 5-based pyramid, that is, the whole of this first class,
are given by the formula of XVIII,, in which

le,l=0 N’;’1=1, N'5,2=1a le',ss:oa
z. e. : N;,,=0=N,,.

And the only partitions of the 5-gon are R™(5, 0)=1, R™(5, 1)=1, R™(5, 2)=1.
‘Wherefore
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o= (R¥(5, 1).R™(5,0)-+R%(5,0).R*(5, 1)+ (5, 2) B(5, 0)+B(5,2) R™(5,0)}
ci(s+5)
o+ (R(5, 1) RU(5, 1) T0(5, 2) R, D R(3, 1) R(5, 2)+ R4, 2) R(5.2)
| <2+1,l>—V51—N52
= {11411+ L1+ LI+ L1+ L1114+ 11)3=16,

For pg, the partitions of the 6-pyramid, we have the following partitions of the hex-

gon \—
Ri#%(6,0)=1, R*%:(6,1)=1, R%6,1) =1,

R (6,2)=1, R%(6,2) =1, 1(6,2) =1,
R4(6, 3) =1, I*(6, 3)=1,
TRU(6, 3)=1; |
wherefore the formula of XVIII. becomes,
5;=198, thus:

D5 (R¥P(6, 0). R¥(6, 16, 246, 3)4Ro%(6, 0). R¥(6, 146, 246, 3)}.!5(2+g‘,§1~) [= 6]
- (RADI(6, 146, 2). R4(6, 0) 4 Rw(6, 1 4-6, 2) Ro4+(6, 0)}.%(2 o) [= 4]
+ (R0, 146, 2). RA(6, 1+6, 246, 3)+ R¥e4(6, 1+6, 2). R¥(6, 1-46, 2+, 3)}-’%(2"’2%) [=24]
+{RA(G, 146, 2). R#(6, 146, 2)} 132 +2—‘,‘-2-) [= 8]
+{R(6, 146, 246, 3). RY(6, 146,246, 3)}. 1 1= [=2T]
A (ROD(6, 0). (6, 3+ RE4(6, 0). -7, 3} 132435 [= 2]
L {R4i(6, 146, 2). R¥(6, 3)+Res9(6, 146, 2). R*(6, 3) }.z%(2+ ?3) [= 4]
+ {(R¥(6, 16, 26, 3). R¥(6, 3) +-RI(6, 1+6, 246, 3). R™(6, )} -5 [= 6]
FR(6, 3). R¥(6, 3)-2 54 1(6, 2)1(6, 2).2- 5 +TX(6, 3)T(6, 3).2. 5 [=19]
+ {ROD(6, 0)1(6, 2)+RH(5, 0)1(6, 2)} -y [=2]

+ (ROD(6, 0) (6, 8)-HR=(6, 0) (6, 3)}- [= 2]
+{Rmm(6, 146, 2)1(6, 2)+R>#%(6, 14-6, 2).1(6,2)}5% [=12]
+ (R#2(6, 14-6, 2) I*(6, 8)+R¥#4(6, 16, 2) (6, 3)}- 55 [=12]

+{R¥(6, 146,246, 3).1(6, 2)4-R¥(6, 146, 2+6, 3)I(6, 2)}- 107 [=36]
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+{(RY(6, 146, 26, 3)I%(6, 3)-+R¥(6, 14+6,2+6, 3).1(6, 3)}- 507 [=
{6, 3)1(6, 2)+1(6, 2) R¥(6, 3)}3_%_'_ {R*®(6, 3)1*(6, 3)+1°(6, 3).R*(6, 3)}3% [=
+{1(6, 2).I*(6, 3)+1%(6, 3).16, 2}.2- 2'1 =
—(N6,14N6,24N6, 3) | =

But I see no advantage that can arise from the construction of these partitions of the
5-based and 6-based pyramids, which is, however, to be effected with the greatest ease.

XXII. It may be worth while to observe, that the regular 12-edron, and of course
its polar syntyp the regular 20-edron, are 8-gonous polyedra of the second class. The
12-edron is made by laying a 5-partitioned 8-ace having only two triangular faces on an
8-gon in which four lines are drawn each cutting two edges, and passing through no
summit. Two of these cutting lines terminate in the base of each of the triangles just
named. This sympolar pair can be exhibited in a paradigm thus; for closed polygons
can be drawn through the 20 summits and on the 12 faces of the 12-edron:—

18]
6]
12)

_2]



BEING THE FIRST CLASS OF R-GONOUS X-EDRA. 161

Here the 30 edges abc. ..zeByd are all 3535, carrying the subindex quadruplets

11292 2832 8749 4352 53612, 64712
74811, 85911, 951010, 105119, 115126, 1241386,
133146, 147156, 157169, 168179, 1781810, 18119 10,
1912011, 201112, 18821, 16788, 12584, 13463,
159116, 12512, 2012711, 1911910, 1710109, 4714 3.

The closed polygon 123...20 is drawn through the 20 summits, and the closed
polygon 123..12 through the 12 faces. If any five continuous edges, of which no three
are in a pentagon, be made to convanesce, as the five asrpg, the 8-ace is restored,
6 triaces thus uniting to form it. The disappearance of the remaining vanescibles will
réstore the 8-gon,

Every z-edron of the first class, ¢. . every partition of a pyramid, can be thus exhibited
in a paradigm, and the greater number of those of the higher classes.

The partitions of the r-pyramid have all this property, that each contains a discrete
r-gony, 1. e. an r-gonous system of vanescibles of which no diaped meets a diagonal; or
each contains an 7-gony of the first class. Some of them, however, contain also a mized
r-gony, on which are one or more angles made by a diaped and a diagonal. If the figure
contain a discrete 7-gony, it is an r-gonous polyedron of the first class; if not, it isa
polyedron of a higher class. The diapeds of a discrete r-gony form a continuous line of
convanescibles; if a diagonal be drawn in a face about one of these, the r-gony is no.
longer discrete, but mixed. ~

The problems that are next to be solved towards the completion of the theory of the
polyedra, are the following; and I have little hope of their solution, in terms of 7.

How many partitions can be made of the summits of a partitioned r-gon, so that no
(r+1)-gon shall be introduced ?

How many partitions can be made of the faces of a partitioned r-ace, so that no
(r+1)-ace shall be introduced ?

In how many ways can a partitioned partition of the r-ace be laid on a partitioned
partition of the r-gom, so that no (r+-e)-gony, nor (r—-e€)-gon, or (r+e¢)-ace shall be
introduced ?

MDCCCLVIIL 7



